PCSK9 RNAi Therapeutics

Kevin FitzGerald
PSCK9 RNAi Therapeutics

- The following relationships exist related to this presentation:
 - Kevin Fitzgerald and Alnylam team members:
 - Holds stock options in Alnylam Pharmaceuticals
 - University of Texas Southwestern Medical Center:
 - Engaged in research for Alnylam
 - Tekmira Pharmaceuticals/UBC
 - Engaged in research for Alnylam Pharmaceuticals
RNAi Therapy for Hypercholesterolemia
Rationale for PCSK9

Hypercholesterolemia/PCSK9
- Well validated target
 - Gain and loss of function mutations
 - Rodent and Human (gf) and (lf) mutations
 - PCSK9 expressed in liver (delivery)
 - Early clinical markers of activity possible (PCSK9, LDLc, ApoB)

Alnylam PCSK9 program
- Discovery of pM active PCSK9 siRNAs
- Formulations or conjugates for delivery
- Proof of concept
 - Multiple rodent models, NHP’s
- Collaboration with UT Southwestern
 - Horton, Hobbs, Brown and Goldstein
RNAi Product Platform
Turning siRNAs into Drugs

Bioinformatics, *in vitro* assays

Cholesterol, others

Phosphorothioate 2’OMe, 2’F

• Select
 » *In silico* design
 » *In vitro* assays

• Stabilize
 » Chemistry

• Deliver
 » Formulations
 » Conjugates

Incorporate minimal number of modifications required for appropriate pharmaceutical properties
No Evidence of Off-Target Silencing by PCS-B2

Endogenous Genes at High Concentration of PCS-B2

in vitro (*Hep3B, RNAiMax, 1uM*)

- ORMDL2
- BMP6
- TAPT1
- MYEF2
- LOC442252
- RFT1
- PCSK9

PCS-B2 pM IC$_{50}$
Lack of PCS-B2 Cytokine Induction
Panel of 7 Cytokines, IFN-α, IP-10, IFN-γ, TNFα, IL-6, IL-1ra, G-CSF (hPBMC) 13 Donors
PCS-B2 Has No Effect On Cell Proliferation In 4 Different Cell Lines (Hep3B, Cos7 Cells Example)
Lipid Nanoparticles for Systemic RNAi

- Multi-component lipid formulation
 - Cationic lipid
 - Structural lipid
 - PEG lipid
 - Cholesterol

- Highly efficient for liver delivery
 - Hepatocyte-specific gene silencing achieved

- Low surface charge
- Small uniform size particle <100 nm
RNAi Silencing of PCSK9 in Rats

Liver PCSK9 mRNA and serum Tc levels

Predicted PCR band
Seq. Confirmed

5’RACE (Liver)

LNP-siRNA (mg/kg) Day 0 N=6/group

PCSK9 mRNA Total chol. LDLR

RNAi Silencing of PCSK9 Decreases Total Cholesterol in Rats
Duration and Lack of Fatty Liver

PCSK9 mRNA is down modulated in hCETP/hApoB100 Transgenic Mice

LDL particle number lowering

LNPX-PCS siRNA (5mg/kg)

Day 0 3

N=4/group

liver PCSK9 mRNA
NMR LipoProfile: LDL and HDL particle number

PCSK9/GAPDH

Relative to PBS=1

Control PCS-A2

Total Particle Number

Control PCS-A2

LDL HDL LDL HDL
RNAi Silencing of LDLc and PCSK9 Protein Non-Human Primates

- Acute and durable effects after a single 30 minute infusion
- PCSK9 plasma levels reduced by up to 70% of pre-dose levels
- Rapid reductions in LDL cholesterol levels by 40-60%

LNP Progress

Efficacy Improvement Over Time

LNP- formulated FVII siRNA

Day 0 → serum FVII protein

% Residual Factor VII

ED_{50}

FVII siRNA Dose (mg/kg)

C12-200

DLin-KC2-DMA-a

DLin-KC2-DMA-b

DLinDMA

DLinDAP

98N12-5(I)

serum FVII protein

Even Formulated FVII siRNA

Day 0

3

0.01

0.1

1

10

0

20

40

60

80

100

120

ED_{50}

ED_{50}
Dose Sparing Paradigm and Multiple Injections

Rats were bled one day prior to repeated dosing. Maintenance: 1 x wk

- Initial 3mg/kg bolus
- Maintenance: 1 x wk

PBS
- 3mg/kg bolus + PBS once a week
- 3mg/kg bolus + 0.3 mg/kg per week
Dose Response in Rats

PCS-A2 ED50 <0.1 mg/kg in Newer Formulations

LNP E-formulated PCS-A2 siRNA

Liver PCSK9 mRNA, total serum cholesterol

Day 0 → 3

Graph showing relative to PBS=1 for PCSK9/GAPDH and Cholesterol levels with LNP E-formulated PCS-A2 siRNA dosage ranging from 0.01 to 10 mg/kg.
ALN-PCS demonstrates potent efficacy in primates
- Employs 2nd generation LNPs
- Rapid and durable dose-dependent reduction in PCSK9 protein
- PCSK9 silencing results in >50% reductions in LDLc
Treatment with LNP-PCS-B2 Does Not Affect HDLc Levels
5 Different siRNAs Formulated Nanoparticles Inhibit 5 Different Hepatic mRNAs in Dose Dependent Manner Mice 72h

Graph:
- y-axis: Target mRNA, relative to LNP12-Luc Control
- x-axis: siRNA mg/kg
- Lines represent different target mRNAs: PCSK9, ApoB, FVII, Xbp1, SORT1
- ED50 values: PCSK9 0.07 mg/kg, ApoB 0.05 mg/kg, FVII 0.025 mg/kg, Xbp1 0.03 mg/kg, SORT1 0.08 mg/kg

PNAS publication in press
10 Different Formulated siRNAs in One Nanoparticle Inhibit 10 Different Hepatic mRNAs
Mice, 0.1mg/kg of each siRNA, 48h
RNAi therapeutic targeting PCSK9:

- Results in rapid, significant, and sustained lowering of LDLc levels, but not HDLc
- Lead molecules are active in all pre-clinical models tested:
 - pM and specific
- Rats
 - Total cholesterol lowering; RNAi based and LDLR mechanisms
 - <3 weeks duration on single dose
 - Steatosis free
- NHP study:
 - LDLc decreased ~40-60% with no effects on HDL cholesterol at doses >0.1mg/kg
- Dose sparing paradigms may be possible
- Combinations possible to treat metabolic syndrome
 - Up to ten targets in same formulation
ALN-PCS Team

Alnylam Pharmaceuticals
- M. Frank-Kamenetsky
- T. Racie
- L. Qin
- A. Akinc
- V. Sharma
- L. Nechev
- S. Shulga-Morskaya
- K. Mills
- S. Millstein
- J. Wong
- T. Lei
- R. Duncan
- G. Wang
- R. Kallanthottathil
- M. Maier
- C. Gamba-Vitalo
- M. Kretschmer
- M. Jayaraman
- R. Myers
- K. Charisse
- M. Manoharan
- V. Kotelianski
- A. de Fougerolles

University of Texas SW
- J. Horton
- A. Grefhorst
- N. Anderson

Tekmira
- S. Semple
- A. Lee
- L. Jeffs
- E. Yaworski
- P. Lutwyche
- I. MacLachlan

MIT
- Dan Anderson